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A covariant quantization scheme employing reducible representations of canonical
commutation relations with positive-definite metric and Hermitian four-potentials (an
alternative to the Gupta-Bleuler method) is tested on the example of quantum elec-
tromagnetic fields produced by a classical current. The Heisenberg dynamics can be
consistently formulated since the fields are given by operators and not operator-valued
distributions. The scheme involves a Hamiltonian whose free part is modified but the
minimal-coupling interaction is the standard one. Solving Heisenberg equations of
motion under the assumption that the fields are free for times t0 = ±∞ we arrive at
retarded and advanced solutions. Once we have these solutions we can deduce the form
of evolution of retarded and advanced fields between two arbitrary finite times. The
appropriate unitary evolution operators are found and their generators are computed.
Now the generators involve the same free part as before, but the interaction term turns
out to be modified. For a pointlike charge localized on a world-line za(t) we find the in-
teraction term of the form −q �A(z(t)) · �v(t) − q

∫
d�z · �E where the integration is along

those parts of the charge world-line where the charge velocity is nonzero. There is
no self-energy contribution. Next we compute photon statistics. Poisson statistics natu-
rally results and infrared divergence can be avoided even for pointlike sources. Classical
fields produced by classical sources can be obtained if one computes coherent-state av-
erages of Heisenberg-picture operators. It is shown that the new form of representation
automatically smears out pointlike currents. We discuss in detail Poincaré covariance of
the theory and the role of Bogoliubov transformations for the issue of gauge invariance.
The representation we employ is parametrized by a number that is related to Rényi’s
α. It is shown that the “Shannon limit” α → 1 plays here a role of a correspondence
principle with the standard regularized formalism.
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1. INTRODUCTION

Dynamics of observables is given in quantum mechanics by Heisenberg
equations of motion. In quantum field theory one does not really work with
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Heisenberg equations but prefers the S-matrix formalism. The situation is caused
mainly by the fact that quantum fields are operator valued distributions and their
products taken at the same point in space-time are meaningless. Formal solutions,
when inserted back into Heisenberg equations, typically lead to mathematical
absurdities due to divergences. The difficulties are less visible and thus easier
to live with at the S-matrix level. Another reason for the popularity of the S-
matrix formalism is the question of gauge invariance. There are various ‘proofs’
in the literature that the S-matrix formalism of quantum electrodynamics (QED) is
manifestly gauge invariant. However, as discussed in detail in (Białynicki-Birula,
1967, 1970), all the ‘easy one-line proofs,’ including the celebrated Feynman one
(Feynman, 1949), are false if divergent expressions are encountered.

As often stressed by Dirac, the removal-of-divergences techniques practically
mean a departure from the Heisenberg equation. Dirac regarded this as a serious
drawback of quantum field theory. In his last published lecture (Dirac, 1984), en-
titled ‘The requirements of fundamental physical theory,’ and given to a gathering
of Nobel Laureates at Lindau on July 1, 1982, he said:

“I feel that we have to insist on the validity of this Heisenberg equation. This
is the whole basis of quantum theory. We have got to hold onto it whatever we do,
and if the equation gives results which are not correct it means that we are using
the wrong Hamiltonian. This is the point I want to emphasise (. . .). Heisenberg
originally formulated these equations with the dynamical variables appearing as
matrices. You can generalise this very much by allowing more general kinds of
quantities for your dynamical variables. They can be any algebraic quantities such
that you do not in general have commutative multiplication (. . .). Some day people
will find the correct Hamiltonian and there will be some new degrees of freedom,
something which we cannot understand according to classical ideas, playing a role
in the foundations of quantum mechanics.”

The talk appeared in a published form in 1984, the year of Dirac’s death.
Also in 1984 Dirac published his last paper (Dirac, 1984), entitled ‘The future of
atomic physics’ where he criticised, again from the perspective of the divergences,
the dogma of irreducibility of representations of elementary quantum symmetries.
Taken together, the two papers form a kind of scientific testament of this great
physicist.

Quite recently, in a series of papers (Czachor, 2000, 2003, 2004), one of us
was advocating the idea that the occurrence of the divergences may be related to the
fact that the standard quantization scheme is based on irreducible representations
of canonincal (anti-)commutation relations. It was argued that there are physical
reasons for the use of certain reducible representations of CCR (in (Czachor, 2000,
2003)) and CAR (in (Czachor, 2004)). There is no problem with multiplying fields
at the same space-time point because the new representation leads to fields that
are operators and not operator-valued distributions. Preliminary analysis of inter-
actions with charges discussed in these papers (two-level atoms (Czachor, 2000),
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classical current (Czachor, 2003), reducibly quantized fermionic fields (Czachor,
2004)) was always pointing into the conclusion that the reducible representation
may indeed remove divergences, although definite statements would have been far
premature at that stage.

Particularly intriguinging seems the possibility, discussed in (Wilczewski
and Czachor, 2006; Czachor and Wilczewski, 2006), that the experiments on
Rabi oscillations performed by the Paris group (Brune et al., 1996) may be more
consistently interpreted in terms of fields quantized by means of the reducible
representations. If this were the case, it would mean that the fundamental question
which representation is more physical would be within the reach of present-day
optical experiments. But then we have to go further with the analysis of the new
representation. In particular, we have to control the relativistic and gauge properties
of the formalism, a fact that justifies the origin of the present paper.

The goal of the present work is to apply a covariant analogue of the rep-
resentation introduced in (Czachor, 2003) to the problem of Heisenberg-picture
evolution of electromagnetic fields interacting with a classical current. The issue
of infinities is not our main concern here since any reliable discussion of ultraviolet
divergences would require quantized currents, but various automatic regulariza-
tions due to our choice of representation can also be observed. In the present paper
we are more interested in the problem of Poincaré covariance vs. gauge invariance,
positive-definiteness of the scalar product, and unitarity of evolution. Interaction
with classical currents does not grasp all the possible subtleties of QED, but it
allows for exact solutions and thus is a natural playground for testing any new
quantization paradigm.

The results are quite promising. As opposed to standard quantization schemes
it makes in our representation perfect sense to speak of the Heisenberg-picture evo-
lution of field operators. We begin with solving the equations under the assumption
that the fields are free at timelike infinities. We make this condition precise by
first taking solutions that are free at an arbitrary t0, and afterwards taking the limit
t0 → ±∞. The results of this limiting procedure are, respectively, retarded and
advanced solutions of the Maxwell equations. Having the solutions for all times,
we can find a unitary map W±(t, t1) that maps retarded/advanced fields at time t1
into retarded/advanced fields at time t . Once we have this unitary map, we can
compute its generator. We show that it differs from the usual minimal-coupling
Hamiltonian.

We study in more detail the solutions corresponding to pointlike classical
sources. Taking a relatively general form of the charge world-line we compute
the explicit form of the modified interaction Hamiltonian. The interaction term
does not contain any self-energy contribution but we find in addition a term that
describes the work performed by the charge against free electric field. We then
show what kind of a classical field one arrives at if one computes coherent-state
averages of our field operators. The resulting field looks as if it were produced
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by an extended current, even though the current is pointlike. We construct the
evolution operator and consider its associated S-matrix. No infrared divergence
occurs and there is no problem with computing photon statistics even for pointlike
sources.

What is interesting, the different form of representation of CCR we work
with implies also a slightly modified form of the free part of the Hamiltonian.
The modification is subtle and is related to some additional degree of freedom
characterized by a parameter N . The role of N for Rabi oscillations was discussed
in detail in (Wilczewski and Czachor, 2006) with the conclusion that finite N are
compatible with experiment. The “thermodynamic limit” N → ∞ plays a role of
a correspondence principle that maps the new theory into a regularized form of
the standard one. Effectively, the limiting results are equivalent to the standard
ones but with a cut-off. It has to be stressed, however, that there is no cut-off in the
Hamiltonian, and the regularization is a result of the special form of the vacuum
one employs in the new representation. We also show that the limit N → ∞ is
equivalent to Rényi’s limit α → 1.

The modification of the formalism we discuss seems to satisfy standards
which are not that far from the requirements proposed by Dirac: We have new
types of noncommuting dynamical variables, they involve certain new degrees of
freedom that have no counterpart in classical electrodynamics, and their dynamics
is governed by a modified Hamiltonian. The dynamics is given by Heisenberg
equations but their solutions simultaneously satisfy Maxwell’s equations with a
regularized current. The regularization is not introduced ad hoc, but follows from
the quantum structure. As opposed to standard quantization schemes the reducibly
quantized fields are less singular than their classical counterparts. One can also
think of this effect as an example of David Finkelstein’s idea of ‘quantization as
regularization’ (Finkelstein, 2006).

The paper is organized as follows. We choose the Penrose-Rindler spinor
formalism since it naturally leads to null tetrads that are implicitly present in
Lorenz-gauge potentials, and play a role of polarization vectors. We begin with
clarifying links between the nonuniqueness of Lorenz-gauge classical 4-potentials
and equivalence classes of spin frames associated with null 4-momenta. The spin
frames are later used in construction of two types of momentum-dependent tetrads
(associated with circular and linear polarizations of spin-1 fields and ‘longitudinal’
and ‘timelike’ polarizations of two additional scalar fields). As an intermediate
step towards quantization we explain in Section 5 how a change of spin frame
within an equivalence class is related to a Bogoliubov transformation of creation
and annihilation operators. For classical fields we do not have to worry about
changes within equivalence classes since anyway the result is a gauge transfor-
mation. However, when we quantize the 4-potential the changes of spin-frames
become visible in transformations of the two ‘timelike’ and ‘longitudinal’ fields
and the formalism becomes ambiguous unless we compensate this modification
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by a unitary transformation of annihilation and creation operators — this is where
we need a Bogoliubov transformation. In Section 6 we introduce the reducible
representation, parametrized by a natural number N , of canonical commutation re-
lations and, in Section 7, we briefly explain why in thermodynamic limit N → ∞
the representation will automatically introduce cut-offs at the level of averages.
In Section 8 we show how to quantize the 4-potential in a manifestly covariant
way and without indefinite metric or non-Hermitian field operators. In Section 9
we discuss the analogue of the Jordan-Pauli function and show that distributions
typical of the standard formalism are here replaced by non-singular objects. Sec-
tion 10 discusses Poincaré covariance of the theory. Sections 11 and 12 investigate
various subtleties of the Lorenz condition. In Section 13 we introduce vacuum,
multi-photon, and coherent states. The problem of fields produced by classical
currents is discussed in Section 14. We solve Heisenberg equations under the
assumption that at t0 the fields are free, and we conclude that the assumption
makes physical sense only if t0 is moved to ±∞. In these limits the solutions
of Heisenberg equations are equivalent to retarded and advanced fields, but the
effective current that occurs in the source term is not a ‘c-number’ but an operator
that nevertheless commutes with all field operators (the operator can be nontrivial
because the representation is reducible). Having these solutions we are in position
to find an explicit unitary transformation that shifts a retarded/advanced solution in
time by a finite �t . We find both the transformation and its generator in Section 16,
and in Section 17 we check the result on a pointlike charge. In this way we have
systematically derived the Hamiltonian that allows to solve the problem with re-
tarded or advanced initial condition at t = 0 instead of that with free field at ±∞.
In Section 18 we address the issue of S-matrix and the associated photon statistics.
Finally, having the operator solutions we compute their coherent-state averages
and discuss the implications of the formalism for classical electrodynamics.

2. EQUIVALENCE CLASSES OF SPIN-FRAMES
AND CLASSICAL GAUGE FREEDOM

The 4-momentum ka = ka(k) = (|k|, k) of a massless particle can be written
in spinor notation (Penrose and Rindler, 1984) as ka = πA(k)π̄A′

(k), where πA(k)
is a spinor field defined by ka up to a phase factor. For any πA(k) there exists
another spinor ωA(k) satisfying the spin-frame condition ωA(k)πA(k) = 1. Given
πA(k) we cannot find a unique ωA(k), since for any function φ(k) the new field

ω̃A(k) = ωA(k) + φ(k)πA(k) (1)

also satisfies ω̃A(k)πA(k) = 1. This leads to the equivalence relation: ω̃A(k) ∼
ωA(k) iff ω̃A(k) − ωA(k) is proportional to πA(k).
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Free classical electromagnetic fields are related to πA(k) by

Fab(x) = ∂aAb(x) − ∂bAa(x) = −∫
d�(k)πA(k)πB(k)εA′B ′

(
α(k,−)e−ik·x

+ α(k,+)eik·x) + c.c. (2)

where d�(k) is the invariant measure on the light-cone. The 4-potential in a
Lorenz 3 gauge can be taken in the form (cf. (Ashtekar, 1991))

Aa(x) = i
∫
d�(k)e−ik·x(ωA(k)π̄A′(k)α(k,+)

+πA(k)ω̄A′(k)α(k,−)
) + c.c. (3)

Now, if we replace ωA(k) by ω̃A(k) belonging to the same equivalence class,
i.e. satisfying (1), then

Aa(x) �→ Ãa(x) = Aa(x) − ∂a	(x) (4)

where

	(x) = ∫
d�(k)φ(k)

(
α(k,+)e−ik·x + α(k,−)eik·x) + c.c. (5)

is a solution of �	(x) = 0. It follows that the equivalence class of spin-frames
corresponds to an equivalence class of Lorenz-gauge potentials.

3. TETRADS ASSOCIATED WITH SPIN-FRAMES

Following (Penrose and Rindler, 1984) we introduce two types of tetrads
associated with the spin-frames. The null tetrad employs the 4-momentum as one
of its elements:

ka(k) = πA(k)π̄A′(k) (6)

ωa(k) = ωA(k)ω̄A′(k) (7)

ma(k) = ωA(k)π̄A′(k) (8)

m̄a(k) = πA(k)ω̄A′(k). (9)

Complex 4-vectors ma(k), m̄a(k) occur in (3) and play the role of circu-
lar polarization vectors. The Lorenz condition satisfied by (3) follows from the
transversality property ka(k)ma(k) = ka(k)m̄a(k) = 0. The null tetrad is related
to the Minkowski-space metric tensor of signature (+,−,−,−) in the standard
way (Penrose and Rindler, 1984)

gab = ka(k)ωb(k) + ωa(k)kb(k) − ma(k)m̄b(k) − mb(k)m̄a(k). (10)

3 As noted in (Penrose and Rindler, 1984), footnote on p. 321, the gauge condition ∂aAa = 0 was
introduced by L. Lorenz and not by H. A. Lorentz, whose name is associated with Lorentz transfor-
mations.



Regularization as Quantization in Reducible Representations of CCR 79

This formula is independent of the choice of the representative ωA(k) of a given
equivalence class.

The tetrad defined by

xa(k) = 1√
2
(ma(k) + m̄a(k)) (11)

ya(k) = i√
2
(ma(k) − m̄a(k)) (12)

za(k) = 1√
2
(ωa(k) − ka(k)) (13)

ta(k) = 1√
2
(ωa(k) + ka(k)) (14)

is, in the terminology of (Penrose and Rindler, 1984), a restricted Minkowski
tetrad, satisfying

gab = ta(k)tb(k) − xa(k)xb(k) − ya(k)yb(k) − za(k)zb(k) (15)

The potential now can be written as

Aa(x) = i
∫
d�(k)

(
xa(k)α(k, 1) + ya(k)α(k, 2)

)
e−ik·x + c.c. (16)

The link between the two types of amplitudes

α(k,±) = 1√
2
(α(k, 1) ± i α(k, 2)) (17)

is analogous to this between circular and linear polarizations. The link is not
accidental.

4. TRANSFORMATION PROPERTIES OF SPIN-FRAMES

The transformation properties of spin-frames we shall discuss below do not
depend on their explicit realization. Let us denote by �k the spacelike part of the
4-vector 
a

bkb(k), and by 
A
B the unprimed SL(2,C) matrix corresponding to


a
b ∈ SO(1,3). The spinor-field transformation

πA(k) �→ 
πA(k) = 
A
BπB(�−1k) (18)

implies that ka(k) = 
πA(k)
πA′(k) and, hence,


πA(k) = e−i�(
,k)πA(k) (19)

The phase factor

e−i�(
,k) = 
ABωA(k)πB(�−1k) (20)

is the one occuring in the unitary spin-1/2 zero-mass representation of the (cov-
ering space of the) Poincaré group, and does not depend on the choice of the
representative ωA(k). The angle �(
, k) is known as the Wigner phase.
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An analogously defined


ωA(k) = 
A
BωB(�−1k) (21)

satisfies


ωA(k)
πA(k) = 1 (22)

and thus


ωA(k) = ei�(
,k)(ωA(k) + φ(k)πA(k)) (23)

= ei�(
,k)ω̃A(k) (24)

with some φ(k). The new ω̃A(k) belongs to the equivalence class of ωA(k). The
gauge transformation ωA(k) �→ ω̃A(k) is in general nontrivial and depends on the
explicit form of the spin-frame one works with. This is the reason why 4-potentials
are not 4-vector fields: A Lorentz transformation changes Lorenz gauges within the
equivalence class of spin-frames. In order to guarantee independence of physical
quantities of particular representatives one employs the result described in the next
Section.

5. EQUIVALENCE CLASSES OF SPIN-FRAMES
AND BOGOLIUBOV TRANSFORMATION

Of crucial importance for the formalism we shall develop below is the link
between the transformation (1) and a transformation of a Bogoliubov type, i.e. the
one mixing creation and annihilation operators in a way that preserves canonical
commutation relations.

To begin with, consider four annihilation operators aj satisfying [aj , a
†
j ′ ] =

δjj ′1 and the operator

Va = xaa1 + yaa2 + zaa3 + taa
†
0 . (25)

The change of spin-frame by ωA �→ ωA + |φ|e−iθπA is represented at the
tetrad level by

⎛

⎜
⎜
⎜
⎝

ta

xa

ya

za

⎞

⎟
⎟
⎟
⎠

�→

⎛

⎜
⎜
⎜
⎝

t̃a

x̃a

ỹa

z̃a

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

1 + |φ|2/2 |φ| cos θ |φ| sin θ −|φ|2/2

|φ| cos θ 1 0 −|φ| cos θ

|φ| sin θ 0 1 −|φ| sin θ

|φ|2/2 |φ| cos θ |φ| sin θ 1 − |φ|2/2

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

ta

xa

ya

za

⎞

⎟
⎟
⎟
⎟
⎠

(26)
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The matrix in (26) is a special Lorentz transformation in Minkowski space with
metric tensor diag(1,−1,−1,−1). Let us now introduce four new operators bj

defined implicitly by

Va = taa
†
0 + xaa1 + yaa2 + zaa3 = t̃ab

†
0 + x̃ab1 + ỹab2 + z̃ab3 (27)

The explicit form

b1 = a1 − |φ| cos θa3 − |φ| cos θa
†
0

b2 = a2 − |φ| sin θa3 − |φ| sin θa
†
0

b3 = |φ| cos θa1 + |φ| sin θa2 + (
1 − 1

2 |φ|2)a3 − 1
2 |φ|2a†

0

b0 = −|φ| cos θa
†
1 − |φ| sin θa

†
2 + 1

2 |φ|2a†
3 + (

1 + 1
2 |φ|2)a0

implies that [bj , b
†
j ′ ] = δjj ′1 and, hence, there exists (Bratelli and Robinson, 1981)

a unitary Bogoliubov-type transformation B satisfying bj = B†ajB. In order to
explicitly construct B 4 we introduce the representation of the Lie algebra so(1, 3),

J1 = i(a†
3a2 − a

†
2a3), (28)

J2 = i(a†
1a3 − a

†
3a1), (29)

J3 = i(a†
2a1 − a

†
1a2), (30)

K1 = i(a†
0a

†
1 − a0a1), (31)

K2 = i(a†
0a

†
2 − a0a2), (32)

K3 = i(a†
0a

†
3 − a0a3), (33)

and their combinations that form a representation of e(2),

L1 = K1 + J2 = i(a†
0a

†
1 − a0a1 + a

†
1a3 − a

†
3a1), (34)

L2 = K2 − J1 = i(a†
0a

†
2 − a0a2 − a

†
3a2 + a

†
2a3), (35)

L3 = J3, (36)

[L1, L3] = −iL2, (37)

[L2, L3] = iL1, (38)

[L1, L2] = 0. (39)

Then

B = B(φ) = ei|φ|(L1 cos θ+L2 sin θ), (40)

4 This explict construction has been done in collaboration with K. Wrzask.
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as can be verified by a straightforward computation. Obviously, [B(φ1), B(φ2)] =
0 for any φ1, φ2, since the map φ �→ B(φ) is a representation of translations.

6. CONSTRUCTION OF THE REDUCIBLE
REPRESENTATION OF CCR

The construction is analogous to the one introduced in (Czachor, 2003). The
modification with respect to (Czachor, 2003) is that here we introduce four types of
annihilation operators, and not just two corresponding to the polarization degrees
of freedom.

One begins with four operators, a0, a1, a2, a3, satisfying commutation re-
lations typical of an irreducible representation of CCR: [aj , a

†
j ′ ] = δjj ′1. Let |0〉

denote their common vacuum, i.e. aj |0〉 = 0. Now take the kets |k〉 normalized
with respect to the light-cone delta function

〈k|k′〉 = δ�(k, k′) = (2π )32|k|δ(3)(k − k′). (41)

What we call the N = 1 (or 1-oscillator) representation of CCR acts in the
Hilbert space H spanned by kets of the form

|k, n0, n1, n2, n3〉 = |k〉 ⊗ (a†
0 )n0 (a†

1 )n1 (a†
2 )n2 (a†

3 )n3

√
n0!n1!n2!n3!

|0〉.

Physically, H may be regarded as representing the space of states of a single
four-dimensional oscillator. The 1-oscillator representation is defined by

a(k, j ) = |k〉〈k| ⊗ aj . (42)

This representation is reducible since the commutator

[a(k, j ), a(k′, j ′)†] = δjj ′δ�(k, k′)|k〉〈k| ⊗ 1 (43)

involves at the right-hand-side the operator-valued distribution I (k) = |k〉〈k| ⊗ 1
belonging to the center of the algebra, [a(k, j ), I (k′)] = [I (k), a(k′, j ′)†] = 0, for
all k, k′, j , j ′. The I (k) form a resolution of unity

∫
d�(k)I (k) = ∫

d�(k)|k〉〈k| ⊗ 1 = I. (44)

Here I is the identity operator in H.
For arbitrary N the representation is constructed as follows. Let H be the

representation space of the N = 1 representation. Define

H = H ⊗ . . . ⊗ H︸ ︷︷ ︸
N

(45)

and let A be an arbitrary operator defined for N = 1. Let

A(n) = I ⊗ . . . ⊗ I︸ ︷︷ ︸
n−1

⊗A ⊗ I ⊗ . . . ⊗ I︸ ︷︷ ︸
N−n

. (46)
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The N oscillator extension of a(k, j ) is defined by

a(k, j ) = 1√
N

∑N
n=1a(k, j )(n) (47)

and satisfies the reducible representation

[a(k, j ), a(k′, j ′)†] = δjj ′δ�(k, k′)I (k) (48)

where

I (k) = 1
N

∑N
n=1I (k)(n). (49)

As before we find the resolution of unity
∫
d�(k)I (k) = I (50)

where I is the identity operator in H.

7. THERMODYNAMIC LIMIT AND QUANTUM LAW
OF LARGE NUMBERS

The asymptotic properties of the formalism for N → ∞ can be anticipated
already at this stage if one recognizes in the formula (49) the frequency opera-
tor employed in the analysis of quantum laws of large numbers (Hartle, 1968;
Farhi et al., 1989; Aharonov and Reznik, 2002; Finkelstein, 2003). Indeed, let
Pθ be a projector. The frequency operator corresponding to the random variable
(proposition) represented by Pθ reads

Pθ,N = 1
N

∑N
n=1P

(n)
θ , (51)

Let Pθ |θ〉 = |θ〉 and |ψ〉 = ∑
θ ψθ |θ〉 be a state. Let |ψ〉 = |ψ〉 ⊗ . . . ⊗ |ψ〉 (N

times). Then the following weak law of large numbers holds true

lim
N→∞

‖ (Pθ,N )m|ψ〉 − |ψθ |2m|ψ〉 ‖= 0 (52)

for m = 1, 2, 3, . . .. The weak law states that effectively, for N → ∞, the fre-
quency operators act by multiplication of N -copy states by appropriate probabili-
ties. This is essentially why also in our field theory we will find averages where,
in the limit N → ∞, the operators I (k) will be replaced by their corresponding
probabilities Z(k) associated with the choice of the vacuum state.

8. QUANTIZATION OF THE POTENTIAL

The potential operator at the level of the N -oscillator representation reads

Aa(x) = i
∫
d�(k)

(
xa(k)a(k, 1) + ya(k)a(k, 2) + za(k)a(k, 3)

+ ta(k)a(k, 0)†
)
e−ik·x + h.c. (53)
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= i
∫
d�(k)

(
ma(k)a(k,+) + m̄a(k)a(k,−) + za(k)a(k, 3)

+ ta(k)a(k, 0)†
)
e−ik·x + h.c. (54)

It is better to think of (53) and (54) as operators representing a system quantized
at the N = 1 level, and then extended to arbitrary N by

Aa(x) = 1√
N

∑N
n=1Aa(x)(n). (55)

From such a perspective it is easier to understand the structure of generators
of the Poincaré group and other observables.

Let us note that the potential is Hermitian and the Hilbert space H involves a
positive-definite scalar product. A change (1) of spin-frame can be compensated
by an N -oscillator Bogoliubov transformation B = B ⊗ . . . ⊗ B, where B is of
the type discussed in Section 5.

The commutator of fields taken at arbitrary space-time points

[Aa(x), Ab(y)] = igabD(x − y) (56)

involves the operator analogue of the Jordan-Pauli function

D(x) = i
∫
d�(k)I (k)(e−ik·x − eik·x). (57)

The correct signature of the metric tensor in (56) comes from the Bogoliubov-
type structure of the positive-frequency part of Aa(x), i.e. the combination of
annihilation and creation operators. If one had replaced a

†
0 by a0 one would have

been forced to depart either from positivity of the scalar product or unitarity of
evolution. A reducible version of such a (Gupta-Bleuler) formalism is possible
(Czachor, 2004), but one can show that contradictions with probability interpre-
tation of the theory would necessary occur (for a brief discussion of the problem
cf. Section 19.).

9. JORDAN-PAULI OPERATOR: THE ROOTS
OF REGULARIZATION

To understand why the formalism we construct is less singular than the one
based on irreducible representations it is instructive to take a closer look at (57). In
the first place, formula (57) is typical of all the representations of CCR, reducible
or irreducible, the differences boiling down to different explicit forms of the central
element I (k). The standard Pauli-Jordan function corresponds to representations
where I (k) equals the identity. In our representation we can write (cf. Eq. (49))

D(x) = D(+)(x) + D(−)(x) (58)

D(±)(x) = ±i
∫
d�(k)I (k)e∓ik·x = 1

N

∑N
n=1D

(±)(x)(n). (59)
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The operator whose N -oscillator extensions occur in (59) reads explicitly

D(±)(x) = ±i
∫
d�(k)|k〉〈k|e∓ik·x ⊗ 1 = ±ie∓ik̂·x ⊗ 1,

k̂a = ∫
d�(k)ka|k〉〈k|. (60)

As we can see, the operators D(±)(x) are unitary representations of 4-
translations, and their generators are given by k̂a . In particular,

D(±)(0) = ±iI, D(±)(0) = ±iI . (61)

Quantization in terms of our reducible representation replaces distributions by
unitary operators. This is the main difference with respect to the schemes based
on regularizations of distributions (Efimov, 1977; Moffat, 1989, 1990; Evens
et al., 1991; Kleppe and Woodard, 1993; Clayton, 2001; Cornish, 1992; Basu and
Joglekar, 2001). In our approach there are no cut-off functions in Heisenberg-
picture operators. They appear effectively at the level of averages and are due to
the properties of states (e.g. compare the operator (135), involving the frequency
operator I (k) and no cut-off, with the average (171), involving the probabil-
ity Z(k) and the cut-off function χ (k)). As one of the consequences, spectra
of Hamiltonians occurring in reducibly quantized theories will not depend on
cut-offs.

These facts show that the regularization occuring in our approach is of an
entirely different origin than the ones we know from quantizations based on
irreducible representations.

10. POINCARÉ COVARIANCE OF FREE FIELDS

The Poincaré transformations will be taken in the form

a(k,±) �→ e±2i�(
,k)eik·ya(�−1k,±) = U
†

,ya(k,±)U
,y (62)

a(k, 3) �→ eik·ya(�−1k, 3) = U
†

,ya(k, 3)U
,y (63)

a(k, 0)† �→ eik·ya(�−1k, 0)† = U
†

,ya(k, 0)†U
,y (64)

where �(
, k) is the Wigner phase. Transformation (62) is the unitary spin-
1 massless representation of the Poincaré group. Transformations (63), (64)
imply that the additional two fields are spin-0 and massless. Similarly to
(Czachor, 2003) we reduce the construction to the problem of finding U
,y

satisfying

U
,y = U
,y ⊗ . . . ⊗ U
,y︸ ︷︷ ︸
N

. (65)
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10.1. Four-Translations

The 4-momentum for N = 1 reads

Pa = ∫
d�(k)ka|k〉〈k| ⊗ (a†

1a1 + a
†
2a2 + a

†
3a3 − a

†
0a0)

= ∫
d�(k)ka|k〉〈k| ⊗ (a†

1a1 + a
†
2a2)

︸ ︷︷ ︸
P I

a

+ ∫
d�(k)kaJ (k)

︸ ︷︷ ︸
P II

a

, (66)

with

J (k) = |k〉〈k| ⊗ (a†
3a3 − a

†
0a0) (67)

One immediately verifies that

eiP ·xa(k,±)e−iP ·x = a(k,±)e−ix·k (68)

eiP ·xa(k, 3)e−iP ·x = a(k, 3)e−ix·k (69)

eiP ·xa(k, 0)†e−iP ·x = a(k, 0)†e−ix·k (70)

implying

U
†
1,yAa(x)U 1,y = Aa(x − y). (71)

The operator J (k) will later reappear as the generator of rotations in the group
E(2) associated with the 4-potential. The part P I

a is identical to the 4-momentum
operator introduced in (Czachor, 2003). The 4-momentum for arbitrary N reads

P a = ∑N
n=1P

(n)
a (72)

= P I
a + ∫

d�(k)kaJ (k) (73)

Only for N = 1 the expression coincides with the generator found by standard
Noether formulas (cf. the discussion of this point in (Czachor, 2000)). The form
(72) is characteristic of a 4-momentum of N non-interacting particles. These
particles (four-dimensional oscillators) have no counterpart in classical electro-
dynamics. It should be stressed that these are not the oscillators of Heisenberg,
Born, and Jordan (Heisenberg et al., 1925) since there is no relationship between
N , which is finite, and the number of different frequencies, which is infinite.

10.2. Rotations and Boosts

To find an analogous representation of

a(k,±) �→ e±2i�(
,k)a(�−1k,±) = U
†

,0a(k,±)U
,0 (74)

a(k, 3) �→ a(�−1k, 3) = U
†

,0a(k, 3)U
,0 (75)

a(k, 0)† �→ a(�−1k, 0)† = U
†

,0a(k, 0)†U
,0 (76)
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we take the same definition as in (Czachor, 2003), i.e.

U
,0 = exp
(∑

s=±2is
∫
d�(k)�(
, k)|k〉〈k| ⊗ a†

s as

)

× (∫
d�( p)| p〉〈�−1 p| ⊗ 1

)
. (77)

Taking into account the properties of spin-frames and tetrads one verifies that

U
†

,0Aa(x)U
,0 = i

∫
d�(k)e−ik·
−1x

(
m̃a(�k)e2i�(
,�k)a(k,+)

+ ˜̄ma(�k)e−2i�(
,�k)a(k,−) + z̃a(�k)a(k, 3)

+ t̃a(�k)a(k, 0)†
) + h.c. = 
a

bÃb(
−1x)

= 
a
bB(
)†Ab(
−1x)B(
) (78)

where B(
) compensates the change of gauge caused by (24). One can costruct
B(
) by first finding an appropriate B(
) of the form analogous to (40), and
then defining B(
) = B(
)⊗N . It is more elegant to assume that U
,0 is ac-
companied by a redefinition of vacuum (see below) |O〉 �→ B(
)†|O〉. Then the
transformation of the potential becomes effectively

U
†

,yAa(x)U
,y = 
a

bAb(
−1(x − y)) (79)

i.e. that of a 4-vector field.
A still simpler way is to assume the transformation rule


A
BωB(�−1k) = ei�(
,k)ωA(k) (80)

i.e. to replace (24) by the form typical of the entire equivalence class. Then one
can put B(
) = I .

The operators ocuring at right-hand-sides of field commutators transform as
translation invariant scalar fields

U
†

,yI (k)U
,y = I (�−1k) (81)

U
†

,yD(x)U
,y = D(
−1x). (82)

The representation we have introduced is a direct sum of a massless, spin-1 unitary
representation (corresponding to the indices 1 and 2) and a massless spin-0 unitary
representation (corresponding to the indices 3 and 0) of the Poincaré group. In
such a structure the ‘longitudinal’ and ‘timelike’ components do not transform as
parts of a four-vector, but as two scalar fields. However, there is a lot of freedom
here. There exists, for example, an interesting representation which employs the
link between Bogoliubov and SO(1, 3) transformations, and where all the four
components behave as those of a four-vector. A particular example of this link
was employed in Section 5. It is interesting to compare the two representations in
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the context of field quantization, but this will be done in a separate paper (Czachor
and Wrzask in preparation).

11. LORENZ CONDITION AND EUCLIDEAN GROUP

The field tensor Fab(x) = ∂aAb(x) − ∂bAa(x) consists of two parts corre-
sponding to spin-1 and spin-0 fields (formulas (83) and (84), respectively)

Fab(x) = −∫
d�(k)πA(k)πB(k)εA′B ′

(
a(k,−)e−ik·x

+ a(k,+)†eik·x) + h.c. (83)

−
√

2
∫
d�(k)∗Mab(k)

(
�1(k) cos k · x + �2(k) sin k · x

)
(84)

∗Mab(k) = −kaωb(k) + kbωa(k) (85)

�1(k) = 1
2 (a(k, 3) + a(k, 3)† + a(k, 0) + a(k, 0)†)

�2(k) = 1
2i

(a(k, 3) − a(k, 3)† + a(k, 0)† − a(k, 0))

The tensor ∗Mab(k) is the dual of

Mab(k) = iπ(AωB)εA′B ′ − iπ̄(A′ ω̄B ′)εAB (86)

kb∗Mab(k) = −ka (87)

One immediately recognizes in (86) and (87) spinor formulas for a massless angu-
lar momentum tensor and the Pauli-Lubanski vector of helicity −1 (cf. (Penrose
and Rindler, 1986), Eq. (6.3.2)).

The gauge transformation (1) influences the part (84) in Fab(x) according to

∗Mab(k) �→ ∗Mab(k) − ka(k)qb(k) + kb(k)qa(k) (88)

qa(k) = φ(k)m̄a(k) + φ̄(k)ma(k) (89)

that is, in a way typical of angular momentum. The 4-vector qa(k) can be used
to reexpress the gauge transformed spin-frame as a twistor (Penrose and Rindler,
1986)

π̃A(k) = πA(k) (90)

ω̃A(k) = ωA(k) + qAA′(k)π̄A′
(k). (91)

Mutual relations within an equivalence class are thus determined by the twistor
equation. Change of origin in the space of coordinates qa can be compensated by
the Bogoliubov transformation B.

Together with J (k) occuring in (73) we obtain the algebra e(2)

[�1(k), J (k′)] = iδ�(k, k′)�2(k) (92)
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[J (k),�2(k′)] = iδ�(k, k′)�1(k) (93)

[�1(k),�2(k′)] = 0 (94)

It is interesting that the removal of the scalar fields by the constraint

〈� ′|�1(k)|�〉 = 〈� ′|�2(k)|�〉 = 0 (95)

is analogous to the condition leading to the classical Maxwell field if one starts
from induced representations (Ohnuki, 1988). Indeed, all massless discrete-spin
representations are found if one requires that the two translation generators of e(2)
annihilate vectors from the representation space. It might be therefore tempting to
impose the stronger constraint

�1(k)|�〉 = �2(k)|�〉 = 0 (96)

also here. To see why this condition would be too strong we write the potential in
terms of e(2):

Aa(x) = −
√

2
∫
d�(k)ωa(k)

(
�2(k) cos kx − �1(k) sin kx

)

−
√

2
∫
d�(k)ka

(
Q

1
(k) cos kx + Q

2
(k) sin kx

) + . . . (97)

where

Q
1
(k) = − 1

2i

(
a(k, 3) − a(k, 3)† − a(k, 0)† + a(k, 0)

)

Q
2
(k) = − 1

2

(
a(k, 3) + a(k, 3)† − a(k, 0)† − a(k, 0)

)

and the dots stand for the part involving only the spin-1 fields. The part involving
Q(k) is a gauge term and this is why we do not see it in Fab(x). The entire algebra
reads

[�1(k), J (k′)] = iδ�(k, k′)�2(k) (98)

[J (k),�2(k′)] = iδ�(k, k′)�1(k) (99)

[Q
1
(k),−J (k′)] = iδ�(k, k′)Q

2
(k) (100)

[−J (k),Q
2
(k′)] = iδ�(k, k′)Q

1
(k) (101)

[Q
1
(k),�1(k′)] = iδ�(k, k′)I (k) (102)

[Q
2
(k),�2(k′)] = iδ�(k, k′)I (k) (103)

[�1(k),�2(k′)] = 0 (104)

[Q
1
(k),Q

2
(k′)] = 0 (105)
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[Q
1
(k),�2(k′)] = 0 (106)

[Q
2
(k),�1(k′)] = 0 (107)

This is the Lie algebra of the 2-dimensional Euclidean group in a phase space.
The “position operators” Q(k) shift the “momenta” �(k) and the constraint (96)
must be inconsistent with dynamics. There is no problem with (95).

The 4-divergence of the potential

∂aAa(x) =
√

2
∫
d�(k)

(
�2(k) sin kx + �1(k) cos kx

)

shows that the weak Lorenz condition

〈� ′|∂aAa(x)|�〉 = 0 (108)

is equivalent to (95).

12. LORENZ CONDITION AND POINCARÉ COVARIANCE OF STATES

The 1-oscillator Hilbert space H consists of vectors

|�〉 = ∑∞
n0,n1,n2,n3=0

∫
d�(k)�(k, n0, n1, n2, n3)|k, n0, n1, n2, n3〉 (109)

satisfying
∑∞

n0,n1,n2,n3=0

∫
d�(k)|�(k, n0, n1, n2, n3)|2 < ∞ (110)

Subspaces consisting of vectors of the form

|�n0,n1,n2,n3〉 = ∫
d�(k)�(k, n0, n1, n2, n3)|k, n0, n1, n2, n3〉

are invariant subspaces of the representation constructed in Section 10.
In particular, all the vectors of the form

|�〉 = ∑∞
n1,n2=0

∫
d�(k)�(k, n0, n1, n2, n3)|k, n0, n1, n2, n3〉 (111)

belong to the Poincaré-invariant subspace satisfying the weak Lorenz condition
(95) for N = 1. Moreover, if we additionally require n0 = n3 then

〈� ′|P II
a |�〉 = 0 (112)

An extension to arbitrary N is immediate. One concludes that the Lorenz condition
(95) can be imposed in a Poincaré invariant way.

13. VACUUM, MULTIPHOTON, AND COHERENT STATES

The subspace corresponding to n0 = n1 = n2 = n3 = 0 defines the vacuum
for N = 1. Any vector of the form

|O〉 = ∫
d�(k)O(k)|k, 0〉 (113)
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plays a role of a 1-oscillator vacuum. For arbitrary N the vacuum state is taken in
the form

|O〉 = |O〉 ⊗ . . . ⊗ |O〉
︸ ︷︷ ︸

N

(114)

All vacuum states are annihilated by all annihilation operators. Vacuum states are
translation invariant and SL(2,C) covariant:

U
,y |O〉 = ∫
d�(k)O(�−1k)|k, 0〉 (115)

U
,y |O〉 = U
,y |O〉 ⊗ . . . ⊗ U
,y |O〉 (116)

Of particular importance is the scalar field representing vacuum probability density
Z(k) = |O(k)|2. Square integrability implies that Z(k) decays at infinity; later on,
we will also require Z(k) going to zero at k = 0 in order to avoid infrared diver-
gences. The number Z = maxk{Z(k)} is Poincaré invariant and can be interpreted
as a renormalization constant.

Multiphoton states are obtained in the usual way by acting on the vacuum
|O〉 with creation operators. Coherent states associated with amplitudes α(k,±)
occurring in (2) are defined in terms of the displacement operator (Czachor, 2003)

D(α) = exp
(
a(α)† − a(α)

)
(117)

a(α) = ∑
s=±

∫
d�(k)α(k, s)a(k, s) (118)

A coherent state is constructed from vacuum by |O(α)〉 = D(α)|O〉. Coherent-
state averages are related to classical fields by

〈O(α)|Aa(x)|O(α)〉 = i
∫
d�(k)Z(k)

(
ma(k)α(k,+)

+ m̄a(k)α(k,−)
)
e−ik·x + c.c. (119)

Let us note that the averages involve the amplitudes Z(k)α(k,±) and not just
α(k,±).

14. FIELDS PRODUCED BY A CLASSICAL CURRENT

The interaction Hamiltonian in the interaction picture is assumed in the usual
form

H (t) = ∫
d3x J a(t, x)Aa(t, x) (120)

where J a(t, x) is a classical conserved current. The interaction picture evolution
operator satisfies

i d
dt

U (t, t0) = H (t)U (t, t0), U (t0, t0) = I (121)
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Recalling that Aa(t, x) depends on time via the free Hamiltonian H0 = P 0 (72)
we can split the Heisenberg-picture time evolution into parts involving separately
the interaction picture U (t, t0) and the free evolution, i.e.

AH
a (x) = U (t, t0)†Aa(x)U (t, t0) (122)

To obtain the latter we made the usual assumption that there exists a time t0 at
which the field is free. This restriction is eased later on by moving t0 to ±∞. The
following two splittings of (120) are important

H (t) = H1(t) + H1(t)† = H2(t) + H2(t)†

H1(t) = i
∫
d3x J a(x)

∫
d�(k)

(
xa(k)a(k, 1) + ya(k)a(k, 2)

+ za(k)a(k, 3) + ta(k)a(k, 0)†
)
e−ik·x (123)

H2(t) = i
∫
d3x J a(x)

∫
d�(k)

(
xa(k)a(k, 1) + ya(k)a(k, 2)

+ za(k)a(k, 3) − ta(k)a(k, 0)e2ik·x)e−ik·x (124)

since the commutators

[Hi(t1),Hi(t2)] = 0 (125)

[Hi(t1)†,Hi(t2)†] = 0 (126)
[
Hi(t1), [Hj (t2),Hj (t3)†]

] = 0 (127)
[
Hi(t1)†, [Hj (t2),Hj (t3)†] = 0 (128)

hold for all i, j = 1, 2 and arbitrary times. The commutators

[H1(x0),H1(y0)†] = i
∫
d3xd3y Ja(x)D(+)(x − y)J a(y) (129)

[H2(x0),H2(y0)†] = i
∫
d3xd3y Ja(x)D(+)(x − y)J a(y)

+ 2
∫
d3xd3y J a(x)J b(y)

× ∫
d�(k)I (k)ta(k)tb(k) cos k · (x − y), (130)

are in the center of CCR. Employing continuous Baker-Hausdorff formulas
(Białynicki-Birula et al., 1969; Białynicki-Birula and Białynicka-Birula, 1974)

T exp
(∫ t

t0
dτ

(
A(τ ) + B(τ )

)) = exp
(∫ t

t0
dτ (A(τ ) + B(τ ))

)

× exp
(

1
2

∫ t

t0
dτ1

∫ t

t0
dτ2

(
θ (τ1 − τ2) − θ (τ2 − τ1)

)

× [A(τ1), B(τ2)]
)
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= exp
(∫ t

t0
dτA(τ )

)

× exp
(∫ t

t0
dτB(τ )

)
exp

(∫ t

t0
dτ1

∫ t

t0
dτ2θ (τ1 − τ2)

× [B(τ1), A(τ2)]
)

(131)

where A(τ ), B(τ ) satisfy relations analogous to (125)–(128), we find that

U (t, t0) = exp
(

− i
∫ t

t0
d4xJ a(x)Aa(x)

)

× exp
(

− i
2

∫ t

t0

∫ t

t0
d4x1d

4x2Ja(x1)Dadv(x1 − x2)J a(x2)
)
, (132)

where Dadv(x) = −θ (−x0)D(x). Formula (131) will be later used to compute the
photon statistics.

Employing (132) we find the explicit form of the Heisenberg-picture evolu-
tion

AH
a (x) = Aa(x) + ∫ t

t0
d4yD(x − y)Ja(y) (133)

Our field AH
a (x) is free at t = t0. In the next Section we show that the weak Lorenz

condition holds for (133) only in the limit t0 = ±∞.

15. LORENZ CONDITION AND RETARDED/ADVANCED SOLUTIONS

The four divergence of (133) takes the form

∂aAH
a (x) = free part + ∫

d3x ′D(t − t0, x − x′)J0(t0, x′)

Taking an arbitrary coherent-state average

〈O(α)|∂aAH
a (x)|O(α)〉 = ∫

d3x ′〈O|D(t − t0, x − x′)|O〉J0(t0, x′)

and requiring the Lorenz gauge for all conserved currents, we obtain a condition
on the vacuum-state probability density Z(k) = |O(k)|2

〈O|D(t − t0, x)|O〉 = i
∫
d�(k)Z(k)(e−ik·xeik0t0 − e−ik0t0eik·x) = 0

This cannot hold in general if t0 is finite. However, for t0 → ±∞ the condition
becomes equivalent to

lim
t0→±∞

∫
d3kf (k)ei|�k|t0 = 0 (134)

where f (k) = Z(k)eik·x/|k|. The latter condition requires only that Z(k)/|k| sat-
isfies assumptions of the Riemann-Lebesgue lemma.

We thus restrict the analysis to the two cases of either retarded or advanced
solutions. The formulas are

Aret
a (x) = Aa(x) + ∫

d4yDret(x − y)Ja(y) (135)

Aadv
a (x) = Aa(x) + ∫

d4yDadv(x − y)Ja(y) (136)
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Dret(x) = θ (x0)D(x) (137)

Dadv(x) = −θ (−x0)D(x) (138)

D(x) = Dret(x) − Dadv(x) (139)

Since �D(x) = 0 we find

�Dret(x − y) = �Dadv(x − y)
def= δ(x − y) (140)

One has to bear in mind that δ(x − y) is defined by (140) and that the resulting
operator is not equivalent to the Dirac delta.

The advanced and retarded potentials satisfy

�Aret/adv
a (x) = ∫

d4yδ(x − y)Ja(y)
def= J a(x) (141)

The weak Lorenz condition implies that the average current

〈Ja(x)〉 = 〈O(α)|J a(x)|O(α)〉 = 〈O|J a(x)|O〉 (142)

is the conserved physical current that produces the classical electromagnetic field
〈
Aret/adv

a (x)
〉 = 〈

O(α)|Aret/adv
a (x)|O(α)

〉
. (143)

The modification of the current depends only on the choice of the vacuum
state because the displacement operator commutes with I (k).

To close this Section let us mention that an operator analogue of the Feynman
propagator

DF (x) = θ (x0)D(+)(x) − θ (−x0)D(−)(x) (144)

= Dadv(x) + D(+)(x) = Dret(x) − D(−)(x) (145)

would occur in perturbative formulas in exactly the same places as in the standard
formalism. The reason is that the algebraic structure of Feynman diagrams is
unchanged by the change of representation of CCR. Since �D(±)(x) = 0, the
Feynman potential

AF
a (x) = Aa(x) + ∫

d4yDF (x − y)Ja(y) (146)

satisfies the same equation as the retarded and advanved fields, but is non-
Hermitian for real currents.

16. DYNAMICS OF RETARDED AND ADVANCED
SOLUTIONS BETWEEN TWO FINITE TIMES

We have solved the Heisenberg equations with free-field “initial” conditions
at t0 = ±∞ and arrived at retarded and advanced solutions of Maxwell’s equations.
We have not yet shown what kind of dynamics will map retarded or advanced
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solutions at a finite time t1 into retarded or advanced solutions at another finite
time t . This would be the true solution of the Heisenberg-picture evolution since
at a finite initial time the field cannot be free, unless the charge of the current is
zero.

One can immediately write down appropriate formulas on the basis of the
retarded and advanced solutions

Aret/adv
a (t, x) = lim

t0→−∞/+∞
U (t, t0)†U0(t, t1)†U (t1, t0)Aret/adv

a (t1, x)

×U (t1, t0)†U0(t, t1)U (t, t0) (147)

= W−/+(t, t1)†Aret/adv
a (t1, x)W−/+(t, t1) (148)

Let us recall that U0(t, t1) = exp(−iH0(t − t1)), where H0 = P 0 is the free
Hamiltonian defined by the reducible representation of CCR, and U (t, t0) is the
interaction-picture evolution operator. Some care is needed in the definitions of
W±(t, t1) if the limits limt0→±∞ U (t1, t0)†U0(t, t1)U (t, t0) involve divergent phase
factors. This is the standard problem and has nothing to do with the divergences
of quantum field theory. Keeping this subtlety in mind we arrive at

W±(t, t1) = exp
(
i
∫ t1

±∞d4x
(
J a(x0, x) − J a(x0 + t − t1, x)

)
Aa(x0, x)

)

× exp(−iH0(t − t1)) (149)

It is clear that for a static charge density the evolution is free. The ranges of
integration are finite also in case the currents are static for t < t− and t > t+ with
some t±. It should be stressed that this type of “switching on and off” of the current
is perfectly consistent with charge conservation.

The corresponding Hamiltonian H±(t) satisfying

i∂tW±(t, t1) = W±(t, t1)H±(t) (150)

reads

H±(t) = H0 + ∫ t

±∞d4xAa(x) ∂
∂x0

J a(x). (151)

In the next section we show the explicit form of H±(t) for a pointlike charge. As
we shall see the Hamiltonian has a clear physical interpretation.

17. EXPLICIT FORM OF THE NEW HAMILTONIAN
FOR A POINTLIKE CHARGE

A pointlike charge q localized on an infinitely long world-line za(t) =(
t, z(t)

)
leads to the conserved current (Kijowski and Chruściński, 1995;

Chruściński and Kijowski, 1998)

J a(t, x) = q(1, v(t))δ(3)
(
x − z(t)

)
(152)
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where v(t) = d z(t)/dt . Let us assume that the world-line represents a charge which
is at rest for times t < t− and t > t+. The assumption implies also that v(t±) = 0
if we assume that t �→ z(t) is twice differentiable. Under these assumptions we
find for t− ≤ t ≤ t+ that

H± = H0 − q A(z(t)) · v(t) − q
∫ z(t)

z(t±)d z · E. (153)

H− = H0 for t ≤ t− (154)

H+ = H0 for t ≥ t+ (155)

The line integral in the third term of (153) is along the part of the charge world-line
where the charge velocity is nonzero. The electric field operator takes the usual
form E = −∂0 A − ∇A0.

Let us note that the terms explicitly involving A0 have cancelled out. It is
clear from the construction that the electric field occuring in H± is free. Therefore,
the Hamiltonian does not contain self-energy terms but, instead, takes into account
the work performed by the particle against the electric field.

18. PHOTON STATISTICS

The operator U (t,±∞) (as well as U0(t,±∞)) in general does not exist
due to the problem with divergent phase factor. Fortunately we do not really need
U (t, t0) itself, but only its action on operators X

U(t, t0)(X) = U (t, t0)†X U (t, t0) (156)

Similarly, in order to compute the S-matrix we concentrate on the limiting operator
map S = U(+∞,−∞).

Eqs. (133), (135), (136) imply that at one hand

Aret
a (x) = lim

τ0→−∞ lim
τ→+∞ U (τ, τ0)†Aadv

a (x)U (τ, τ0) = S
(
Aadv

a (x)
)

(157)

and on the other

Aa(x) + ∫
d4yD(x − y)Ja(y) = S(Aa(x)). (158)

Finally, as shown in (Czachor, 2003), the S-matrix S gives the action of the
displacement operator on the field operators.

More interesting is the question of photon statistics in fields produced by
classical currents, especially if the currents are pointlike or stationary. Accelerated
pointlike charges lead, in the standard formalism, to infrared catastrophe. In a naive
approach, all transition probabilities are zero, which contradicts unitarity of the S-
matrix. In manifestly covariant approaches, such as the Gupta-Bleuler formulation,
static charge distributions lead to infinite vacuum-to-vacuum probability, which
again makes no sense. A mathematically correct treatment is possible (Naudts
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and Roeck, 2004), but requires a change to an abstract representation. This goes
against the philosophy of explicit construction, adhered to in the present paper.

In our approach infrared divergence can be avoided by requiring that the
vacuum probability density Z(k) tends to zero at k = 0. Let us take the operator
H2(t) given by (124) and split it into the parts H

(30)
2 (t) and H

(12)
2 (t) involving,

respectively, the fields of spin-0 (i.e. a(k, 3) and a(k, 0)) and spin-1 (i.e. a(k, 1)
and a(k, 2)). Let us recall that the N -oscillator Hilbert space is spanned by N -
fold tensor products of vectors of the form |k, n1, n2, n3, n0〉. We shall refer to
such 1-oscillator states as containing n1 + n2 transverse excitations and n3 +
n0 longitudinal ones. Any state belonging to the N -oscillator Hilbert space H
and containing n transverse excitations, where n is is the sum of the transverse
excitations of all the N oscillators, is regarded as a state involving n transverse
photons. Similarly we define a general state involving n′ longitudinal photons. In
particular, the vector

H
(12)
2 (t1)† . . . H

(12)
2 (tn)†|O〉 (159)

belongs to the subspace of n-transverse-photon states. The state

H
(30)
2 (t1)† . . . H

(30)
2 (tn′)†|O〉 (160)

involves n′ longitudinal photons.
Denote by Pnn′ the projector on the subspace of H that contains states with n

transverse and n′ longitudinal photons. The probability of finding n transverse and
n′ longitudinal photons in the state produced from vacuum by a classical current
is thus

pnn′(t, t0) = 〈O|U (t, t0)†Pnn′U (t, t0)|O〉. (161)

Employing (131) we find for pnn′ = pnn′ (∞,−∞)

pnn′ = 1

n!n′!
〈
O|Fn

12e
−F12Fn′

30e
−F30 |O〉 = 1

n!n′!
dn

dµn

dn′

dνn′ C(µ, ν)
∣
∣
∣
µ=ν=−1

C(µ, ν) = 〈O|eµF12eνF30 |O〉
F12 = ∫ ∞

−∞dτ
∫ ∞
−∞dτ ′[H (12)

2 (τ ),H (12)
2 (τ ′)†

]

F30 = ∫ ∞
−∞dτ

∫ ∞
−∞dτ ′[H (30)

2 (τ ),H (30)
2 (τ ′)†

]

Assuming that detectors react only to spin-1 photons we obtain photon statistics

pn =
∞∑

n′=0

pnn′ = 1

n!

〈
O|Fn

12e
−F12 |O〉

(162)

Alternatively, in order to describe quantum optics of spin-1 observables directly,
without any reference to the spin-0 fields, we can consider states defined via
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reduced density matrices with the spin-0 parts traced out. Probability pn is an
example of an average computed in terms of such a reduced density matrix.

18.1. Fourier Description

To find an explicit formula we first consider a current whose 4-dimensional
Fourier transform is a well behaved function J̃a(k) = ∫

d4xJa(x)eik·x . Then

F12 = ∫
d�(k)I (k)(|J̃ a(k)ma(k)|2 + |J̃ a(k)m̄a(k)|2)

F30 = ∫
d�(k)I (k)|J̃ a(k)ωa(k)|2

where J̃ a(k) is a restriction of J̃a(k) to the light-cone. Due to the continuity
equation J̃ a(k)ka(k) = 0 the spin-1 expression F12 is independent of the choice
of ωA(k).

Employing the relation between I (k) and I (k) = |k〉〈k| ⊗ 1 we can write the
generating function as

C(µ, ν) =
(∫

d�(k)Z(k) exp
(

µ

N

(|J̃ a(k)ma(k)|2 + |J̃ a(k)m̄a(k)|2)
)

× exp
(

ν
N

|J̃ a(k)ωa(k)|2
))N

(163)

Of particular interest is the thermodynamic limit N → ∞ for the spin-1 part. The
corresponding generating function becomes

lim
N→∞

C(µ, 0) = exp
(
µ

∫
d�(k)Z(k)

(|J̃ a(k)ma(k)|2 + |J̃ a(k)m̄a(k)|2)
)

(164)

and

pn = 1
n!

(∫
d�(k)Z(k)

(|J̃ a(k)ma(k)|2 + |J̃ a(k)m̄a(k)|2)
)n

× exp
(

− ∫
d�(k)Z(k)

(|J̃ a(k)ma(k)|2 + |J̃ a(k)m̄a(k)|2)
)

This is basically the well known Poisson distribution, with one modification: The
standard infrared-divergent result is found if one puts Z(k) = 1. However, we
know that

∫
d�(k)Z(k) = 1 and thus Z(k) �= 1. We have remarked earlier that the

maximum value of Z(k) is a positive Poincaré invariant, denoted by Z. Introducing
the new function χ (k) = Z(k)/Z, and absorbing Z1/2 into a renormalized current
J̃ a

ren(k) = Z1/2J̃ a(k) we find

pn = 1
n!

(∫
d�(k)χ (k)

(|J̃ a
renma(k)|2 + |J̃ a

renm̄a(k)|2))n

× exp
( − ∫

d�(k)χ (k)
(|J̃ a

renma(k)|2 + |J̃ a
renm̄a(k)|2))
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Now this is indeed the standard regularized expression. The latter provides us
with a new information about the vacuum wave function O(k): It has to vanish at
the origin k = 0 if one wants the cut-off function χ (k) to regularize the infrared
divergence. The origin belongs to the boundary of the light cone. Vanishing at the
origin is a Poincaré invariant boundary condition.

We regard this result as very important, as it handles in a natural manner two
elements that are imposed in an ad hoc manner in the standard formalism. First
of all, we do not need to justify the infrared cut-off by hand-waving arguments
on unobservability of “soft photons.” Our formalism introduces the cutting-off
function automatically. Secondly, we know what is the origin of a renormalization
constant: This is simply the Poincaré invariant associated with the vacuum wave
function.

18.2. Pointlike Static Charge

In this case it makes no sense to switch to the Fourier domain, since the
position space calculation is more straightforward. Assume the current is Ja(x) =
(qδ(3)(x), 0). The generating function becomes

C(µ, ν) =
(

∫
d�(k)Z(k)e(2q2/|k|2)

(
µ

N
x0(k)2+ µ

N
y0(k)2+ ν

N
z0(k)2+ ν

N
t0(k)2

))N

(165)

In the thermodynamic limit

lim
N→∞

C(µ, ν) = exp
(∫

d�(k)Z(k)(2q2/|k|2)
(
µx0(k)2

+µy0(k)2 + νz0(k)2 + νt0(k)2
))

(166)

Identical results are obtained if instead of U (∞,−∞) one works with U (t,±∞)
for a finite t .

Let us remark that an analogous calculation performed in a reducible version
of Gupta-Bleuler formalism (Czachor, 2004) leads to vacuum-to-vacuum “proba-
bilities” that are greater than 1. The reason is that for currents whose only nonzero
component is J0(x) the Fourier-space version of continuity equation does not read
J̃a(k)ka = 0, but J̃0(k0)δ(k0) = 0, and one cannot claim that J̃a(k) is spacelike.
In our formalism the timelike component of the current comes with the correct
sign.

18.3. Rényi Statistics for Finite N

Generating functions can be written in a unified way for any N in terms of
Kolmogorov-Nagumo averages of the form used in Rényi statistics. Let us recall
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that Rényi’s alpha entropies were obtained in (Rényi, 1960) as Kolmogorov-
Nagumo averages

〈I 〉φ = φ−1
(∑

j

pjφ(Ij )
)

(167)

of the random variable Ij = ln(1/pj ), and φ(x) = e(1−α)x . For α = 1 one obtains
the standard Boltzmann-Shannon entropy. In (Czachor and Naudts, 2002) it was
shown that thermodynamics that employs Rényi type averaging can be used to
derive certain equilibrium distributions occuring in linguistics and protein folding.
Various arguments based on thermodynamics suggest that α �= 1 statistics may
be typical of finite systems. Photon statistics for finite-N representations of CCR
supports this intuition.

Indeed, in the thermodynamic limit we found a generating function of the
form C(µ, 0) = e〈j (µ)〉 with

〈j (µ)〉 = µ
∫
d�(k)Z(k)

(|J̃ a(k)ma(k)|2 + |J̃ a(k)m̄a(k)|2)

being a linear (α = 1) average of µ
(|J̃ a(k)ma(k)|2 + |J̃ a(k)m̄a(k)|2), with proba-

bility density Z(k). For finite N we find C(µ, 0) = e〈j (µ)〉φ where φ(x) = e(1−α)x ,
α = 1 − 1/N , and we average the same random variable with the same probability
distribution. Obviously, the limits N → ∞ and α → 1 are equivalent. It follows
that the field theories based on N < ∞ or N = ∞ representations are related to
one another in a way that is analogous to the relation between systems described
by 0 < α < 1 and α = 1 entropies. These, on the other hand, are known to apply to
fractal and non-fractal geometries, respectively. A natural intuition thus relates the
N < ∞ case to some “space-time foam,” and N = ∞ to continuum space-time.

19. CLASSICAL FIELDS PRODUCED BY CLASSICAL SOURCES:
A QUANTUM WAY

Our previous analysis shows that, having a classical current Ja(x), we obtain a
result that agrees with standard calculations if one (a) absorbs Z1/2 in the current by
means of J ren

a (x) = Z1/2Ja(x) (bare charge renormalization q �→ qren = Z1/2q),
and (b) compares the result with a regularized formula, which is anyway the one
we have to compare with experiment. Z is not a constant but rather an invariant
of the Poincaré group that characterizes a given vacuum. We have also obtained a
cut-off function χ (k) = Z(k)/Z. At this stage we do not have much information
as to the exact form of χ (k) and can only say that it vanishes for large k and k = 0,
and that χ (k)/|k| fulfills the assumptions of the Riemann-Lebesgue lemma.

Now let us take an arbitrary classical amplitude α(k,±) corresponding to left-
and right-handed Fourier modes of a classical electromagnetic field. We define the
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quantum optics regime by the support of those classical amplitudes that satisfy

α(k,±) = α(k,±)χ (k). (168)

The latter formula is meaningful provided χ (k) = 1 if k belongs to quantum
optics regime. Classical fields belonging to quantum optics regime do not contain
wavelenghts that are either too large or too small. Let |O(α)〉 be a coherent state
with α in quantum optics regime. Let us take the coherent state average of the
retarded solution of Heisenberg equation of motion (135) and express it in terms
of the renormalized current J ren

a (x). Taking into account that

Aa(x) = 〈O(α)|Aa(x)|O(α)〉 = Zi
∫
d�(k)

(
ma(k)α(k,+)

+ m̄a(k)α(k,−)
)
e−ik·x + c.c., (169)

by (119) and the assumption that (168) is fulfilled, the formula

〈O(α)|D(x − y)|O(α)〉 = Zi
∫
d�(k)χ (k)

(
e−ik·(x−y) − eik·(x−y)

)
, (170)

and dividing the entire solution by Z1/2, we find that the classical field

〈
Aret

a (x)
〉 = Z−1/2Aa(x) + ∫

d4yDret(x − y)J phys
a (y) (171)

∂a
〈
Aret

a (x)
〉 = ∂aAa(x) = 0 (172)

∂aJ phys
a (x) = 0 (173)

exhibits the textbook relation between the in-field, renormalized current, and
renormalization constant.

Here Dret(x − y) is the ordinary retarded Green function and J
phys
a (y) is the

effective current obtained after charge renormalization and inclusion of χ (k) in
its Fourier transform (the convolution of Dret(x − y) and Ja(y) in (135) allows to
shift the regularization from the Green function to the current, and vice versa). All
these objects have occured in our calculation automatically.

Finally, let us have a closer look at the effective current. For simplicity take
a static pointlike charge. Employing the relations

Z1/2J
phys
0 (x0, x) = ∫

d4y〈O|δ(x − y)|O〉J0(y) = q〈O|∂0D(0, x)|O〉
= Zq 1

2

∫
d3k

(2π)3 χ (k)
(
ei�k·�x + e−i�k·�x)

we find that the effective total charge

Q = ∫
d3xJ

phys
0 (x0, x) = Z1/2qχ (0) = qrenχ (0)

vanishes since we require χ (0) = 0.
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In order to check the physical meaning of this condition let us consider the
simple case of spherically symmetric

χk1,k2 (k) =
{

1 for k1 ≤ |k| ≤ k2

0 otherwise
(174)

Then Q = qren for k1 = 0 and Q = 0 for k1 > 0. One can check that the
effective charge density J

phys
0 (x0, x) = ρk2 (x) − ρk1 (x), where

∫
d3xρk2 (x) =∫

d3xρk1 (x) = qren for all k2, k1 > 0, but simultaneously the pointlike limit
limk1→0 ρk1 (x) = 0 holds. It turns out that the charge density consists of a dif-
ference of two densities: One, which is the sharper and more localized the greater
k2, and the other which is the flatter and less localized the smaller k1. One of them
corresponds to localization of the charge qren in a sinc-like very sharp-peaked
density, and the other describes the charge −qren distributed almost uniformly
in a volume which becomes infinite if k1 = 0. Plots of the densities for k1 > 0
and k1 = 0 become indistinguishable even for relatively large k1 and small k2, so
we leave this exercise to the readers. In practice, one cannot locally distinguish
between k1 = 0 and k1 ≈ 0, but globally the two cases are inequivalent.

20. SUMMARY AND CONCLUSIONS

We have discussed a new quantization scheme based on reducible repre-
sentations of CCR. The principal goal of this research program is to arrive at a
mathematically consistent formalism for quantum fields, that should be described
by a theory and not a set of working rules, as Dirac summarized the current
status of field quantization (Dirac, 1984). In our approach fields are represented
by operators and not operator-valued distributions. The field is a finite quantum
system, and the measure of its size is the parameter N . For this reason two sources
of infinities are absent in the formalism from the very outset: We can multiply
field operators at the same points in space-time and all the tensor products one
encounters are finite. The latter condition means that we deal only with factors of
type I, in von Neumann’s terminology.

We have carefully analyzed Poincaré covariance of the theory. There were two
aspects we had to understand to make sure that the new quantization is not incon-
sistent with special relativity. First of all, we constructed a unitary representation
of the Poincaré group whose carrier space is an ordinary Hilbert space involving no
indefinite metric. Four-potential operator is self-adjoint, the dynamics is unitary,
but commutation relations for fields are nevertheless manifestly Poincaré covari-
ant. The formalism is a promising alterantive to the Gupta-Bleuler quantization,
where the price payed for manifest covariance is either in non-positivity of the
Hilbert-space metric, or in non-Hermicity of the potential.

Secondly, we had to understand in what way a Lorentz transformation in-
fluences the gauge freedom. The latter has led to the observation that a change
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of gauge due to Lorentz transformations can be always compensated by a Bo-
goliubov unitary transformation of the vacuum. An inclusion of the Bogoliubov
transformation turns the 4-potential into a 4-vector field.

One element that remained arbitrary is what kind of a tetrad one has to
associate with a 4-potential. Once one makes a choice then the remaining freedom
can be controlled by Bogoliubov transformations, whose explicit form has been
given. In our formalism the dynamics is unitary, in the ordinary meaning of this
word. We have no problems with negative or greater than 1 “probabilities” that
occur in the Gupta-Bleuler formalism. The correct probability interpretation is
guaranteed by the Schwartz inequality. Further, if one looks at the radiation fields
then our formalism produces the standard regularized formula, which does not
depend on a choice of gauge.

Finally, its seems that we have produced the first example of Heisenberg
dynamics where the retarded or advanced fields unitarily evolve from, say, t = 0
to another finite t . Our construction allowed to systematically derive the form of
Hamiltonian that is responsible for such an evolution, and the result turned out
to differ from the usual minimal-coupling expression: There is no scalar-potential
part and a new term occurs. The term describes the work performed by the charge
moving in electric field. This result may have implications for quantum optics
where the usual treatments of spontaneous emission or resonance fluorescence are
based on initial conditions at t = 0 and not t = −∞ (cf. (Kimble and Mandel,
1976; Rza̧

.
zewski and

.

Zakowicz, 1976, 1988, 1992), the exception is (Pachucki,
1991)).

Summing up, we think we have proposed at least a nontrivial answer to
the problem posed by Dirac in his last two papers. It looks like the formalism,
supplemented by its fermionic analogue introduced in (Czachor, 2004), is ready
for calculations in full quantum electrodynamics. Some preliminary results on
loop diagrams have been already obtained and will be reported in a future paper.
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